Uncertainty quantification for quantum chemical models of complex reaction networks.
نویسندگان
چکیده
For the quantitative understanding of complex chemical reaction mechanisms, it is, in general, necessary to accurately determine the corresponding free energy surface and to solve the resulting continuous-time reaction rate equations for a continuous state space. For a general (complex) reaction network, it is computationally hard to fulfill these two requirements. However, it is possible to approximately address these challenges in a physically consistent way. On the one hand, it may be sufficient to consider approximate free energies if a reliable uncertainty measure can be provided. On the other hand, a highly resolved time evolution may not be necessary to still determine quantitative fluxes in a reaction network if one is interested in specific time scales. In this paper, we present discrete-time kinetic simulations in discrete state space taking free energy uncertainties into account. The method builds upon thermo-chemical data obtained from electronic structure calculations in a condensed-phase model. Our kinetic approach supports the analysis of general reaction networks spanning multiple time scales, which is here demonstrated for the example of the formose reaction. An important application of our approach is the detection of regions in a reaction network which require further investigation, given the uncertainties introduced by both approximate electronic structure methods and kinetic models. Such cases can then be studied in greater detail with more sophisticated first-principles calculations and kinetic simulations.
منابع مشابه
Mechanism Deduction from Noisy Chemical Reaction Networks
We introduce KiNetX, a fully automated meta-algorithm for the kinetic simulation and analysis of general (complex and noisy) chemical reaction networks with rigorous uncertainty control. It is designed to cope with method inherent errors in quantum chemical calculations on elementary reaction steps. We developed and implemented KiNetX to possess three features. First, KiNetX identifies and elim...
متن کامل The Quantification of Uncertainties in Production Prediction Using Integrated Statistical and Neural Network Approaches: An Iranian Gas Field Case Study
Uncertainty in production prediction has been subject to numerous investigations. Geological and reservoir engineering data comprise a huge number of data entries to the simulation models. Thus, uncertainty of these data can largely affect the reliability of the simulation model. Due to these reasons, it is worthy to present the desired quantity with a probability distribution instead of a sing...
متن کاملKinetic Mechanism Reduction Using Genetic Algorithms, Case Study on H2/O2 Reaction
For large and complex reacting systems, computational efficiency becomes a critical issue in process simulation, optimization and model-based control. Mechanism simplification is often a necessity to improve computational speed. We present a novel approach to simplification of reaction networks that formulates the model reduction problem as an optimization problem and solves it using geneti...
متن کاملQuantification of Linagliptin by Chemical Derivatization with Appliance of Chromogenic Reagents
Two simple, specific, accurate, precise, sensitive and cost effectivespectrophotometric methods have been developed and validated for quantification oflinagliptin in pure form and pharmaceutical formulations. Method A is established onthe computation of absorbance of purple coloured chromogen complex at 463 nmwhich is formed by the condensation reaction of the primary amine group oflinagliptin ...
متن کاملQuantum chemical studies on adsorption of imidazole derivatives as corrosion inhibitors for mild steel in 3.5 NaCl solution
Adsorption of benzimidazole, 2-methylbenzimidazole and 2-aminobenzimidazole on mild steel in 3.5 NaCl solution was studied using density function theory DFT calculations. In this regard, charge transfer resistance Rct and double layer capacitance Cdl obtained by electrochemical impedance spectroscopy EIS were used to calculate surface coverage and to build prediction models. When prediction mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Faraday discussions
دوره 195 شماره
صفحات -
تاریخ انتشار 2016